CONTENT

Foreword by Kate Cross	. 8
0.1 Introduction	
Why this book	. 9
0.2 General introduction	10
Case study 1: Dicliptera sericea	12
What is disease	
1. Classification of personalities and diseases	18
Why classification is important for us homeopaths	22
2. Evolution of consciousness	24
3. Evolution of botany	25
4. The different kingdoms in homeopathy	30
4.1 Kingdoms and series	31
Mineral kingdom	32
Case study 2: Ferrum picricum	34
Case study 3: Argon	37
Bacteria kingdom	42
Case study 4: Bacillinum testinum	42
Plant kingdom	45
Case study 5: Gentiana cruciata	
Animal kingdom	51
Case study 6: Latrodectus mactans	51
Human kingdom	55
Case study 7: Folliculinum	55
Refinement and continuation of plant theory	59

5 Case studies from the Asteranae class	. 60
5.1 Subclass of the Campanulidae	. 61
5.1.1 Order of the Dipsacales	. 61
Case study 8: Abelia parvifolia	. 61
5.1.2 Order of the Apiales	. 69
Case study 9: Apium graveolens	. 70
5.2 Subclass of the Lamiidae	. 77
5.2.1 Order of the Boraginales	
Case study 10: Pulmonaria officinalis	. 79
Case study 11: Onosmodium virginianum	. 85
Case study 12: Moltkia petraea	
Case study 13: Onosma bourgaei	
Case study 14: Echium vulgare	
Case study 15: Lithospermum officinale	
Case study 16: Heliotropium peruvianum	107
Case study 17: Ehretia resinosa	
5.2.2 Order of the Lamiales	114
Case study 18: Sinningia brasiliensis	114
Case study 19: Chirita sclerophylla	118
Case study 20: Gesneria ventricosa	119
Case study 21: Glechoma hederacea	123
Case study 22: Plectranthus fruticosus	127
5.2.3 Order of the Solanales	131
Case study 23: Atropa belladonna	132
Case study 24: Jaltomata procumbens	136
Case study 25: Petunia integrifolia	139
Case study 26: Datura arborea	141
Case study 27: Withania somnifera	143
6. Several personalities	146
Case study 28: Bismuthum chloratum, Chenopodium bonus henricus,	
Magnolia grandiflora	
Case study 29: Diastema affine, Allium cepa	159

Case study 30: Hebenstretia dentata, Piper amalago	167
Case study 31: Magnesium carbonicum, Gesneria ventricosa	174
7. Determination of the required personality	180
Case study 32: Petalidium coccineum, Moltkia petraea	
Case study 52.1 etallerum coccineum, monthia perfaca	100
8. Further case studies from the Class of the Asteranae	191
8.1 Subclass of the Ericidae	191
8.1.1 Order of the Polemoniales	192
Case study 33: Polemonium caeruleum	192
8.1.2 Order of the Primulales	196
Case study 34: Primula vulgaris	196
Case study 35: Cyclamen purpurascens	200
8.2 Subclass of the Caryophyllidae	205
8.2.1 Order of the Aizoales	205
Case study 36: Dorotheanthus bellidiformis	206
Case study 37: Gibbaeum pubescens	211
Case study 38: Cheiridopsis speciosa	214
Case study 39: Rhombophyllum dolabriforme Case 1	218
Case study 40: Rhombophyllum dolabriforme Case 2	220
Case study 41: Mesembryanthemum cordifolium	221
8.2.2 Order of the Caryophyllales	223
Case study 42: Cerastium boissierianum	223
Case study 43: Silene chalcedonica	228
8.2.3 Order of the Polygonales	230
Case study 44: Limonium delicatulum	230
Case study 45: Polygonum aviculare	
9. Class of the Malvanae	238
9.1 Subclass of the Malvidae	238
9.1.1 Order of the Brassicales	240
Case study 46: Heliophila linoides	240

9.2 Subclass of the Geraniidae	244
Case study 47: Geranium renardii	244
Case study 48: Geranium cinereum	247
Case study 49: Geranium nodosum Case 1	249
Case study 50: Geranium nodosum Case 2	250
Case study 51: Pelargonium odoratissimum	252
9.3 Subclass of the Saxifragidae	255
Case study 52: Ribes nigrum	256
10. Class of the Fabanae	260
10.1 Subclass of the Fabidae	260
10.1.1 Order of the Rosales	
Case study 53: Crataegus oxyacantha	
Case study 54: Ulmus rubra	
Case study 55: Phylica pubescens	267
10.2 Subclass of the Ranunculidae	
Case study 56: Aconitum lycoctonum	
Case study 57: Eranthis hyemalis	274
Case study 58: Ranunculus acris	278
11. Class of the Lilianae	282
11.1 Subclass of the Liliidae	282
11.1.1 Order of the Poales	282
Case study 59: Restio festuciformis	283
11.1.2 Order of the Zingiberales	286
Case study 60: Calathea crotalifera	286
Case study 61: Cautleya spicata	288
11.1.3 Order of the Liliales	290
Case study 62: Bowiea volubilis	290
Case study 63: Albuca setosa 1	292
Case study 64: Albuca setosa 2	295

Content Einführung

12. Class of the Magnolianae	299
12.1 Subclass of the Magnoliidae	299
12.1.1 Order of Magnoliales	299
Case study 65: Magnolia grandiflora	300
12.1.2 Order of the Piperales	303
Case study 66: Peperomia argyreia	303
Case study 67: Peperomia urocarpa	306
Case study 68: Peperomia cuspidilimba	308
Case study 69: Peperomia velloziana	309
Case study 70: Peperomia hoffmannii	311
Case study 71: Piper unguiculatum	314
Case study 72: Piper friedrichsthalii	316
Case study 73: Piper nigrum	318
12.1.3 Order of the Aristolochiales	319
Case study 74: Aristolochia clematitis	319
13. Word of thanks	324
14. Literature	325
15. Picture credits	325

3. Evolution of botany

As already mentioned, homeopathy is constantly being refined and more precise. This development has been taking place in botany for thousands of years, as can be seen in the following diagram:

Botany originally developed from the knowledge of herbal medicine. The oral traditions of the medical system and their Materia Medica of the Khoi-San people in southern Africa date back to the Stone Age (100,000 years and more).

The descriptions of the mode of action of their medicinal plants are quite comparable in their complex nature with drug pictures in our homeopathic Materia Medica.

The treatment with Dicoma schinzii, the fever bush from the Asteraceae plant family, is a traditional example of a Khoi-San plant medicine:

Evolution of botany

A baby suddenly fell. It started flailing its arms and crying incessantly. The mother recognised the symptoms immediately and took the baby to the medicine woman. She looked at the baby and said, 'Ah, the shadow of the Black-shouldered Hawk (Elanus caeruleus) has fallen over your baby. We must act quickly before its spirit enters it and it begins to behave like a bird. It will then flap its arms and grow feathers.' Dicoma schinzii was boiled in water and fed to the baby, the rest of the plant was rubbed on its arms and all over its body. Dicoma schinzii is considered effective in the treatment of fever in Kalahari traditional medicine, it stops febrile convulsions (the flailing arms), while topical application of the plant stops 'feathering' (goose bumps caused by the fever). In the Koi-San tradition, fevers are often associated with birds, as their body temperature is much higher than that of humans. The story of the black-shouldered hawk is so memorable that people have never been able to forget it, nor the symptoms of this herbal remedy.' (Muthi and Myths from the African Bush: Heather Dugmore & Ben-Erik van Wyk)

Shamans dancing, Drakensberg Mountains, painted on a rock wall in South Africa.

Evolution of botany

We use the medicinal plants of the Asteraceae today in the same way as we did 100 000 years ago:

Fever: !!! high above 39 or 40° Celsius, 102–104 Fahrenheit, cold with shivering, alternating with heat and sweating, feeling shattered, dullness, inability to think, only wanting to lie down, loss of appetite, etc.

The European development of botanical systematics began as similarity research in antiquity. There, particular emphasis was placed on external appearance.

Aristoteles devoted himself to the scientific study of plants and his contemporary Theophrastus (384-322 BC) is today regarded as the 'father of botany'. He categorised plants into trees, shrubs, perennials and herbs according to their growth habit. The physician Dioscorides (60 AD) described 800 medicinal plants and categorised them according to their benefits. A short time later, the Roman admiral Pliny the Elder wrote his 37-volume Natural History.

Then, for a long time, there was nothing official in Western natural science

Walfried Strabo wrote about garden plants, vegetables, spices and medicinal plants in the 8th century, while Hildegard v. Bingen, Albert Magnus, Hieronymus Bock and Andrea Cesalpino provided new approaches to the morphology, anatomy, systematics and nomenclature of botany.

A milestone in the development of botany is the taxonomy developed by Carl v. Linne, which he derived from the appearance and sexual organs of plants, i.e. the characteristics of stamens and pistils.

Other highlights were provided on the one hand by plant geography, i.e. a geographical context by Alexander von Humboldt, and on the other hand by evolutionary botany in the temporal context of Charles Darwin.

This was followed by the great further development by many other renowned botanists such as Dahlgren, Conquist, Takthajan and many, many others. The aim of botany is to create a family tree of plants. A complete representation should show the exact position of each species.

With the help of the DNA analysis method of the APG3, botany has continued to develop from the beginning of mankind to the present day with Jan Scholten's Plant theory in homeopathy.